
Security Assessment

ParagonsDAO - Audit
CertiK Verified on Sept 20th, 2022

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 3 Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY PARAGONSDAO - AUDIT

CertiK Verified on Sept 20th, 2022

ParagonsDAO - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/20/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/ParagonsDAO/pdt-staking

...View All

7
Total Findings

6
Resolved

0
Mitigated

0
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/ParagonsDAO/pdt-staking

TABLE OF CONTENTS PARAGONSDAO - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

PDT-01 : Potential Reentrancy Attack (Not Involving Ether)

PDT-02 : Third Party Dependency

PDT-03 : Missing Zero Address Validation

PDT-04 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

PDT-05 : Staked tokens might become locked

PDT-07 : Unlocked Compiler Version

PDT-08 : Typo In Contract

Optimizations

PDT-06 : Function Should Be Declared External

Appendix

Disclaimer

TABLE OF CONTENTS PARAGONSDAO - AUDIT

CODEBASE PARAGONSDAO - AUDIT

Repository

https://github.com/ParagonsDAO/pdt-staking

CODEBASE PARAGONSDAO - AUDIT

https://github.com/ParagonsDAO/pdt-staking

AUDIT SCOPE PARAGONSDAO - AUDIT

1 file audited 1 file with Acknowledged findings

ID File SHA256 Checksum

PDT contracts/PDTStaking.sol 4ea9c16fd7c0b0467a6dc2e1f7171899ca2122a6cb85c245fea8bb64bc3fb398

AUDIT SCOPE PARAGONSDAO - AUDIT

APPROACH & METHODS PARAGONSDAO - AUDIT

This report has been prepared for ParagonsDAO - Audit to discover issues and vulnerabilities in the source code of the

ParagonsDAO - Audit project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS PARAGONSDAO - AUDIT

FINDINGS PARAGONSDAO - AUDIT

This report has been prepared to discover issues and vulnerabilities for ParagonsDAO - Audit. Through this audit, we have

uncovered 7 issues ranging from different severity levels. Utilizing Static Analysis techniques to complement rigorous manual

code reviews, we discovered the following findings:

ID Title Category Severity Status

PDT-01
Potential Reentrancy Attack (Not Involving

Ether)
Volatile Code Medium Resolved

PDT-02 Third Party Dependency Volatile Code Minor Acknowledged

PDT-03 Missing Zero Address Validation Volatile Code Minor Resolved

PDT-04
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

PDT-05 Staked Tokens Might Become Locked
Mathematical

Operations
Minor Resolved

PDT-07 Unlocked Compiler Version Language Specific Informational Resolved

PDT-08 Typo In Contract
Coding Style,

Inconsistency
Informational Resolved

FINDINGS PARAGONSDAO - AUDIT

7
Total Findings

0
Critical

0
Major

1
Medium

4
Minor

2
Informational

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288169
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288167
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288168
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288170
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661888427599
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661867051119
https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661868521444

PDT-01 POTENTIAL REENTRANCY ATTACK (NOT INVOLVING
ETHER)

Category Severity Location Status

Volatile

Code
Medium

contracts/PDTStaking.sol: 142, 144, 146, 163, 188, 189, 285, 298, 30

1
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

External call(s)

142 IERC20(pdt).transferFrom(msg.sender, address(this), _amount);

State variables written after the call(s)

163 stakeDetails[_to] = stakeDetail;

146 totalStaked += _amount;

144 _adjustMeanMultilpier(true, _amount);

This function call executes the following assignment(s).

In PDTStaking._adjustMeanMultilpier ,

adjustedTime = block.timestamp

In PDTStaking._adjustMeanMultilpier ,

adjustedTime = previousTimeStaked + ((timePassed * percent) / 1e18)

In PDTStaking._adjustMeanMultilpier ,

adjustedTime = previousTimeStaked - ((timePassed * percent) / 1e18)

External call(s)

PDT-01 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288169

188 IERC20(pdt).transfer(_to, _amount);

State variables written after the call(s)

189 stakeDetails[msg.sender] = stakeDetail;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598 . Used OpenZepelin ReentrancyGuard

PDT-01 PARAGONSDAO - AUDIT

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

PDT-02 THIRD PARTY DEPENDENCY

Category Severity Location Status

Volatile Code Minor contracts/PDTStaking.sol: 75, 77 Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assume their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

75 address public immutable pdt;

The contract PDTStaking interacts with third party contract with IERC20 interface via pdt .

77 address public immutable rewardToken;

The contract PDTStaking interacts with third party contract with IERC20 interface via rewardToken .

Recommendation

We understand that the business logic requires interaction with the third parties. We encourage the team to constantly

monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[ParagonsDAO Team] Issue acknowledged. I won't make any changes for the current version.

PDT-02 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288167

PDT-03 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor contracts/PDTStaking.sol: 109, 110 Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

109 pdt = _pdt;

_pdt is not zero-checked before being used.

110 rewardToken = _rewardToken;

_rewardToken is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598

PDT-03 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288168

PDT-04 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor contracts/PDTStaking.sol: 142, 188, 218 Resolved

Description

The return value of the transfer()/transferFrom() call is not checked.

142 IERC20(pdt).transferFrom(msg.sender, address(this), _amount);

188 IERC20(pdt).transfer(_to, _amount);

218 IERC20(rewardToken).transfer(_to, _pendingRewards);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598 . Used SafeERC20.

PDT-04 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288170
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

PDT-05 STAKED TOKENS MIGHT BECOME LOCKED

Category Severity Location Status

Mathematical Operations Minor contracts/PDTStaking.sol: 186 Resolved

Description

If enough time has passed since a user staked tokens, such that:

previousTimeStaked - ((percentStakeDecreased * timePassed) / 1e18) < 0

the transaction will be reverted and the user won't be able to unstake tokens.

Recommendation

We recommend the client to elaborate the design.

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598

PDT-05 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661888427599

PDT-07 UNLOCKED COMPILER VERSION

Category Severity Location Status

Language Specific Informational contracts/PDTStaking.sol: 1 Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract permits the

user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode between

compilations due to differing compiler version numbers. This can lead to an ambiguity when debugging as compiler specific

bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than a

specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be compiled at. For

example, for version v0.8.7 the contract should contain the following line:

pragma solidity 0.8.7;

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598

PDT-07 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661867051119

PDT-08 TYPO IN CONTRACT

Category Severity Location Status

Coding Style,

Inconsistency
Informational

contracts/PDTStaking.sol: 25, 32, 116, 124, 131, 173

, 208~210
Resolved

Description

There is a typo in the contract, the word distirbuted should be distributed :

24 /// @notice Details for epoch

25 /// @param totalToDistirbute Total amount of token to distirbute for

epoch

26 /// @param totalClaimed Total amount of tokens claimed from epoch

27 /// @param startTime Timestamp epoch started

28 /// @param endTime Timestamp epoch ends

29 /// @param meanMultiplierAtEnd Mean multiplier at end of epoch

30 /// @param weightAtEnd Weight of staked tokens at end of epoch

31 struct Epoch {

32 uint256 totalToDistirbute;

33 uint256 totalClaimed;

34 uint256 startTime;

35 uint256 endTime;

36 uint256 meanMultiplierAtEnd;

37 uint256 weightAtEnd;

38 }

116 function distirbute() public {

124 _epoch.totalToDistirbute = IERC20(rewardToken).balanceOf(address(this)) -

unclaimedRewards;

131 unclaimedRewards += _epoch.totalToDistirbute;

140 distirbute();

173 distirbute();

PDT-08 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661868521444

208 uint256 _epochRewards = (_epoch.totalToDistirbute * _userWeightAtEpoch) /

weightAtEpoch(_epochIds[i]);

209 if (_epoch.totalClaimed + _epochRewards > _epoch.totalToDistirbute) {

210 _epochRewards = _epoch.totalToDistirbute - _epoch.totalClaimed;

Recommendation

The correct spelling should be distributed :

24 /// @notice Details for epoch

25 /// @param totalToDistribute Total amount of token to distribute for

epoch

26 /// @param totalClaimed Total amount of tokens claimed from epoch

27 /// @param startTime Timestamp epoch started

28 /// @param endTime Timestamp epoch ends

29 /// @param meanMultiplierAtEnd Mean multiplier at end of epoch

30 /// @param weightAtEnd Weight of staked tokens at end of epoch

31 struct Epoch {

32 uint256 totalToDistribute;

33 uint256 totalClaimed;

34 uint256 startTime;

35 uint256 endTime;

36 uint256 meanMultiplierAtEnd;

37 uint256 weightAtEnd;

38 }

116 function distribute() public {

117 }

124 _epoch.totalToDistribute = IERC20(rewardToken).balanceOf(address(this)) -

unclaimedRewards;

125 }

131 unclaimedRewards += _epoch.totalToDistribute;

140 distribute();

173 distribute();

PDT-08 PARAGONSDAO - AUDIT

208 uint256 _epochRewards = (_epoch.totalToDistribute * _userWeightAtEpoch) /

weightAtEpoch(_epochIds[i]);

209 if (_epoch.totalClaimed + _epochRewards > _epoch.totalToDistribute) {

210 _epochRewards = _epoch.totalToDistribute - _epoch.totalClaimed;

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598

PDT-08 PARAGONSDAO - AUDIT

OPTIMIZATIONS PARAGONSDAO - AUDIT

ID Title Category Severity Status

PDT-06 Function Should Be Declared External Gas Optimization Optimization Resolved

OPTIMIZATIONS PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288172

PDT-06 FUNCTION SHOULD BE DECLARED EXTERNAL

Category Severity Location Status

Gas Optimization Optimization contracts/PDTStaking.sol: 225, 231, 238 Resolved

Description

The functions which are never called internally within the contract should have external visibility for gas optimization.

225 function multiplierIndex() public view returns (uint256 index_) {

231 function meanMultiplier() public view returns (uint256 multiplier_) {

238 function userStakeMultiplier(address _user) public view returns (uint256

multiplier_) {

Recommendation

We advise to change the visibility of the aforementioned functions to external .

Alleviation

[ParagonsDAO Team] Issue acknowledged. Changes have been reflected in the commit hash:

5d3ce654c909f3a2d6c274d1b517dc0a00da1598

PDT-06 PARAGONSDAO - AUDIT

https://acc.audit.certikpowered.info/project/3204ee50-1077-11ed-abf4-bf1a33e5ff2a/report?fid=1661267288172

APPENDIX PARAGONSDAO - AUDIT

Details on Formal Verification

Technical description

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those functions. That

ignores contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as operations on the

congruence classes arising from the bit-width of the underlying numeric type. This ensures that over- and underflow

characteristics are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to an ERC-20 token contract not being

formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property definitions

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time steps. Our analysis reasons about the contract's state upon entering and

upon leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

APPENDIX PARAGONSDAO - AUDIT

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply .

In the following, we list those property specifications.

Properties for ERC-20 function transfer

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address.

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

 [](started(contract.transfer(to, value), to == address(0))

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers.

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

APPENDIX PARAGONSDAO - AUDIT

 [](started(contract.transfer(to, value), to != address(0)

 && to != msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[to] + value <= type(uint256).max && _balances[to] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers.

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to == msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[msg.sender] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

 [](willSucceed(contract.transfer(to, value), to != msg.sender

 && _balances[to] >= 0 && value >= 0

 && _balances[to] + value <= type(uint256).max

 && _balances[msg.sender] >= 0 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[msg.sender] == old(_balances[msg.sender]) - value

 && _balances[to] == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

APPENDIX PARAGONSDAO - AUDIT

Specification:

 [](willSucceed(contract.transfer(to, value), to == msg.sender

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[to] == old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes.

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

Specification:

 [](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to)

 ==> <>(finished(contract.transfer(to, value), return

 ==> (_totalSupply == old(_totalSupply) && _allowances == old(_allowances)

 && _balances[p1] == old(_balances[p1])))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance.

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

 [](started(contract.transfer(to, value), value > _balances[msg.sender]

 && _balances[msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance.

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

APPENDIX PARAGONSDAO - AUDIT

 [](started(contract.transfer(to, value), to != msg.sender

 && _balances[to] + value > type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max

 && _balances[msg.sender] <= type(uint256).max

 && value > 0 && value <= _balances[msg.sender])

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return) || finished(contract.transfer(to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed.

If the transfer function in contract contract fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return]

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transfer-never-return-false

Function transfe Never Returns false .

The transfer function must never return false to signal a failure.

Specification:

 [](!(finished(contract.transfer, !return)))

Properties for ERC-20 function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

APPENDIX PARAGONSDAO - AUDIT

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), to == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && to != address(0) && from != to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && _balances[to] + value <= type(uint256).max

 && value >= 0 && _balances[to] >= 0 && _balances[from] >= 0

 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers.

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Specification:

APPENDIX PARAGONSDAO - AUDIT

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && from == to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && value >= 0 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers.

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] + value <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]) - value

 && _balances[to] == old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from == to

 && value >= 0 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

APPENDIX PARAGONSDAO - AUDIT

 [](willSucceed(contract.transferFrom(from, to, value), value >= 0

 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max && _balances[to] >= 0

 && _balances[to] <= type(uint256).max && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> ((_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender]) - value)

 || (_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender])

 && (from == msg.sender

 || old(_allowances[from][msg.sender])

 == type(uint256).max))))))

erc20-transferfrom-change-state

Function transferFrom Has No Unexpected State Changes.

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

 [](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to

 && (p2 != from || p3 != msg.sender))

 ==> <>(finished(contract.transferFrom(from, to, amount), return

 ==> (_totalSupply == old(_totalSupply) && _balances[p1] == old(_balances[p1])

 && _allowances[p2][p3] == old(_allowances[p2][p3])))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _balances[from]

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom, !return)))

erc20-transferfrom-fail-exceed-allowance

APPENDIX PARAGONSDAO - AUDIT

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _allowances[from]

[msg.sender]

 && _allowances[from][msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), return

 && (msg.sender == from

 || _allowances[from][msg.sender] == type(uint256).max))))

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance.

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from != to

 && _balances[to] + value > type(uint256).max && value <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed.

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transferfrom-never-return-false

APPENDIX PARAGONSDAO - AUDIT

Function transferFrom Never Returns false .

The transferFrom function must never return false .

Specification:

 [](!(finished(contract.transferFrom, !return)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds.

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable.

The totalSupply function must return the value that is held in the corresponding state variable of contract contract.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, return == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State.

The totalSupply function in contract contract must not change any state variables.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds.

APPENDIX PARAGONSDAO - AUDIT

Function balanceOf must always succeed if it does not run out of gas.

Specification:

 [](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value.

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), return == _balances[owner])))

erc20-balanceof-change-state

Function balanceOf Does Not Change the Contract's State.

Function balanceOf must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), _totalSupply == old(_totalSupply)

 && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds.

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value.

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

APPENDIX PARAGONSDAO - AUDIT

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 return == _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State.

Function allowance must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address.

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

 [](started(contract.approve(spender, value), spender == address(0))

 ==> <>(reverted(contract.approve)

 || finished(contract.approve(spender, value), !return)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs.

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

 [](started(contract.approve(spender, value), spender != address(0))

 ==> <>(finished(contract.approve(spender, value), return)))

APPENDIX PARAGONSDAO - AUDIT

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly.

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && value >= 0 && value <= type(uint256).max)

 ==> <>(finished(contract.approve(spender, value), return

 ==> _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes.

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && (p1 != msg.sender || p2 != spender))

 ==> <>(finished(contract.approve(spender, value), return

 ==> _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances[p1][p2] == old(_allowances[p1][p2]))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed.

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

 [](willSucceed(contract.approve(spender, value))

 ==> <>(finished(contract.approve(spender, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-approve-never-return-false

Function approve Never Returns false .

The function approve must never returns false .

APPENDIX PARAGONSDAO - AUDIT

Specification:

 [](!(finished(contract.approve, !return)))

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX PARAGONSDAO - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

DISCLAIMER PARAGONSDAO - AUDIT

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER PARAGONSDAO - AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

ParagonsDAO - Audit Security Assessment CertiK Verified on Sept 20th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

