
Confidential

SMART CONTRACT AUDIT REPORT

for

PDTStaking

Prepared By: Xiaomi Huang

Hangzhou, China
August 8, 2022

1/15 PeckShield Audit Report #: 2022-302

contact@peckshield.com

Confidential

Document Properties

Client ParagonsDao
Title Smart Contract Audit Report
Target PDTStaking
Version 1.0-rc
Author Jing Wang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0-rc August 8, 2022 Jing Wang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/15 PeckShield Audit Report #: 2022-302

Confidential

Contents

1 Introduction 4
1.1 About PDTStaking . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Reentrancy Risk in PDTStaking . 11
3.2 Redundant Code Removal . 12

4 Conclusion 14

References 15

3/15 PeckShield Audit Report #: 2022-302

Confidential

1 | Introduction

Given the opportunity to review the PDTStaking protocol design document and related smart contract
source code, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given branch of PDTStaking can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About PDTStaking

PDTStaking provides a staking model that takes in PDT and rewards stakes with PRIME tokens, which are
proportional to their share of the total staked token amount and can be modified by a time-dependent
function that encourages long-term staking without unstaking, and resets upon unstaking. This model
will be available alongside a traditional ve model for users who would rather lock their tokens. The
basic information of the audited protocol is as follows:

Table 1.1: Basic Information of PDTStaking

Item Description
Name ParagonsDao

Website https://paragonsdao.com/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report August 8, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/ParagonsDAO/pdt-staking (58bda07)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/15 PeckShield Audit Report #: 2022-302

Confidential

• https://github.com/ParagonsDAO/pdt-staking (TBD)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/15 PeckShield Audit Report #: 2022-302

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/15 PeckShield Audit Report #: 2022-302

Confidential

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/15 PeckShield Audit Report #: 2022-302

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15 PeckShield Audit Report #: 2022-302

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the PDTStaking implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 1

Informational 1

Total 2

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/15 PeckShield Audit Report #: 2022-302

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 low-severity vulnerability
and 1 informational recommendation.

Table 2.1: Key PDTStaking Audit Findings

ID Severity Title Category Status
PVE-001 Low Reentrancy Risk in PDTStaking Time and State
PVE-002 Informational Redundant Code Removal Business Logic

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/15 PeckShield Audit Report #: 2022-302

Confidential

3 | Detailed Results

3.1 Reentrancy Risk in PDTStaking

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PDTStaking

• Category: Time and State [4]

• CWE subcategory: CWE-663 [2]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [9] exploit, and the recent Uniswap/Lendf.Me hack [8].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the PDTStaking as an example, the unstake() function (see the code snippet below) is provided to
externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 164) starts before effecting the update
on the internal state (line 165), hence violating the principle. In this particular case, if the external
contract has certain hidden logic that may be capable of launching re-entrancy via the same entry
function.

145 function unstake(address _to , uint256 _amount) external {
146 Stake memory stakeDetail = stakeDetails[msg.sender];
147
148 if (stakeDetail.amountStaked < _amount) revert MoreThanStaked ();
149 distribute ();

11/15 PeckShield Audit Report #: 2022-302

Confidential

150 _setUserMultiplierAtEpoch(msg.sender);
151 _adjustMeanMultilpier(false , _amount);
152
153 totalStaked -= _amount;
154
155 uint256 previousStakeAmount = stakeDetail.amountStaked;
156 uint256 previousTimeStaked = stakeDetail.adjustedTimeStaked;
157 uint256 timePassed = block.timestamp - previousTimeStaked;
158 uint256 percentStakeDecreased = (1e18 * _amount) / (previousStakeAmount);
159
160 stakeDetail.amountStaked -= _amount;
161
162 // stakeDetail.adjustedTimeStaked = previousTimeStaked - ((percentStakeDecreased *

timePassed) / 1e18);
163
164 IERC20(pdt).transfer(_to , _amount);
165 stakeDetails[msg.sender] = stakeDetail;
166 }

Listing 3.1: PDTStaking::unstake()

Note that another routine stake() shares the same issue.

Recommendation Apply necessary reentrancy prevention by utilizing the nonReentrant modifier
to block possible re-entrancy.

Status

3.2 Redundant Code Removal

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: PDTStaking

• Category: Coding Practices [3]

• CWE subcategory: CWE-563 [1]

Description

In PDTStaking, we observe the inclusion of certain unused code or the presence of unnecessary re-
dundancies that can be safely removed. For example, the inclusion of console.sol in PDTStaking and
the console log output in the distribute() routine via console.log() are helpful in the development
phase when using hardhat. However, for better gas efficiency, we suggest removing these code or
using events to track related information.

117 function distribute () public {
118 if (block.timestamp >= currentEpoch.endTime) {
119 uint256 multiplier_;

12/15 PeckShield Audit Report #: 2022-302

Confidential

120 if (totalStaked != 0) multiplier_ = _multiplier(currentEpoch.endTime ,
adjustedTime);

121 epoch[epochId]. meanMultiplierAtEnd = multiplier_;
122 epoch[epochId]. weightAtEnd = multiplier_ * totalStaked;
123
124 ++ epochId;
125
126 console.log(adjustedTime);
127 console.log(block.timestamp);
128 console.log(" ");
129 ...
130 }
131 }

Listing 3.2: PDTStaking::distribute()

Recommendation Remove the above-mentioned redundant code.

Status

13/15 PeckShield Audit Report #: 2022-302

Confidential

4 | Conclusion

In this audit, we have analyzed the PDTStaking design and implementation. PDTStaking provides a
staking model that takes in PDT and rewards stakes with PRIME tokens which are proportional to
their share of the total staked token amount and are modified by a time-dependent function that
encourages long-term staking without unstaking, and resets upon unstaking. The current code base
is well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

14/15 PeckShield Audit Report #: 2022-302

Confidential

References

[1] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[2] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

[8] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[9] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

15/15 PeckShield Audit Report #: 2022-302

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About PDTStaking
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Reentrancy Risk in PDTStaking
	Redundant Code Removal

	Conclusion
	References

